12 research outputs found

    Conjugate Product Graphs for Globally Optimal 2D-3D Shape Matching

    Full text link
    We consider the problem of finding a continuous and non-rigid matching between a 2D contour and a 3D mesh. While such problems can be solved to global optimality by finding a shortest path in the product graph between both shapes, existing solutions heavily rely on unrealistic prior assumptions to avoid degenerate solutions (e.g. knowledge to which region of the 3D shape each point of the 2D contour is matched). To address this, we propose a novel 2D-3D shape matching formalism based on the conjugate product graph between the 2D contour and the 3D shape. Doing so allows us for the first time to consider higher-order costs, i.e. defined for edge chains, as opposed to costs defined for single edges. This offers substantially more flexibility, which we utilise to incorporate a local rigidity prior. By doing so, we effectively circumvent degenerate solutions and thereby obtain smoother and more realistic matchings, even when using only a one-dimensional feature descriptor. Overall, our method finds globally optimal and continuous 2D-3D matchings, has the same asymptotic complexity as previous solutions, produces state-of-the-art results for shape matching and is even capable of matching partial shapes

    CCuantuMM: Cycle-Consistent Quantum-Hybrid Matching of Multiple Shapes

    Full text link
    Jointly matching multiple, non-rigidly deformed 3D shapes is a challenging, NP\mathcal{NP}-hard problem. A perfect matching is necessarily cycle-consistent: Following the pairwise point correspondences along several shapes must end up at the starting vertex of the original shape. Unfortunately, existing quantum shape-matching methods do not support multiple shapes and even less cycle consistency. This paper addresses the open challenges and introduces the first quantum-hybrid approach for 3D shape multi-matching; in addition, it is also cycle-consistent. Its iterative formulation is admissible to modern adiabatic quantum hardware and scales linearly with the total number of input shapes. Both these characteristics are achieved by reducing the NN-shape case to a sequence of three-shape matchings, the derivation of which is our main technical contribution. Thanks to quantum annealing, high-quality solutions with low energy are retrieved for the intermediate NP\mathcal{NP}-hard objectives. On benchmark datasets, the proposed approach significantly outperforms extensions to multi-shape matching of a previous quantum-hybrid two-shape matching method and is on-par with classical multi-matching methods.Comment: Computer Vision and Pattern Recognition (CVPR) 2023; 22 pages, 24 figures and 5 tables; Project page: https://4dqv.mpi-inf.mpg.de/CCuantuMM

    SIGMA: Scale-Invariant Global Sparse Shape Matching

    Full text link
    We propose a novel mixed-integer programming (MIP) formulation for generating precise sparse correspondences for highly non-rigid shapes. To this end, we introduce a projected Laplace-Beltrami operator (PLBO) which combines intrinsic and extrinsic geometric information to measure the deformation quality induced by predicted correspondences. We integrate the PLBO, together with an orientation-aware regulariser, into a novel MIP formulation that can be solved to global optimality for many practical problems. In contrast to previous methods, our approach is provably invariant to rigid transformations and global scaling, initialisation-free, has optimality guarantees, and scales to high resolution meshes with (empirically observed) linear time. We show state-of-the-art results for sparse non-rigid matching on several challenging 3D datasets, including data with inconsistent meshing, as well as applications in mesh-to-point-cloud matching.Comment: 14 page

    Efficient Deformable Shape Correspondence via Kernel Matching

    Full text link
    We present a method to match three dimensional shapes under non-isometric deformations, topology changes and partiality. We formulate the problem as matching between a set of pair-wise and point-wise descriptors, imposing a continuity prior on the mapping, and propose a projected descent optimization procedure inspired by difference of convex functions (DC) programming. Surprisingly, in spite of the highly non-convex nature of the resulting quadratic assignment problem, our method converges to a semantically meaningful and continuous mapping in most of our experiments, and scales well. We provide preliminary theoretical analysis and several interpretations of the method.Comment: Accepted for oral presentation at 3DV 2017, including supplementary materia

    ATHENA Research Book

    Get PDF
    The ATHENA European University is an alliance of nine Higher Education Institutions with the mission of fostering excellence in research and innovation by facilitating international cooperation. The ATHENA acronym stands for Advanced Technologies in Higher Education Alliance. The partner institutions are from France, Germany, Greece, Italy, Lithuania, Portugal, and Slovenia: the University of Orléans, the University of Siegen, the Hellenic Mediterranean University, the Niccolò Cusano University, the Vilnius Gediminas Technical University, the Polytechnic Institute of Porto, and the University of Maribor. In 2022 institutions from Poland and Spain joined the alliance: the Maria Curie-Skłodowska University and the University of Vigo. This research book presents a selection of the ATHENA university partners' research activities. It incorporates peer-reviewed original articles, reprints and student contributions. The ATHENA Research Book provides a platform that promotes joint and interdisciplinary research projects of both advanced and early-career researchers
    corecore